skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Collecting fog water is crucial for dry areas since natural moisture and fog are significant sources of freshwater. Sustainable and energy-efficient water collection systems can take a page out of the cactus’s playbook by mimicking its native fog gathering process. Inspired by the unique geometric structure of the cactus spine, we fabricated a bioinspired artificial fog collector consisting of cactus spines featuring barbs of different sizes and angles on the surfaces for water collection and a series of microcavities within microchannels inspired by Nepenthes Alata on the bottom to facilitate water flowing to the reservoir. However, replicating the actual shape of the cactus spine using conventional manufacturing techniques is challenging, and research in this area has faced a limitation in enhancing water-collecting efficiency. Here, we turned to 3D printing technology (vat photopolymerization) to create bio-mimetic fog collectors with a variety of geometric shapes that would allow for the most effective conveyance and gathering of water. Various barb sizes, angles between each barb in a single array, spine and barb arrangements, and quantity of barbs were tested experimentally and numeric analysis was carried out to measure the volume of water collected and optimize the mass rate. The result shows that optimal fog collection is with a mass flow rate of 0.7433 g/min, with Li = 900 μm, θ = 45°, ϕ = 90°, Nb = 2, and Ns = 5. This study presents a sustainable and ecologically sound method for efficiently collecting humid air, which is expected to be advantageous for the advancement of future-oriented fog-collection, water-transportation, and separation technologies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025